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A classification of special points of quasilattices in 
two dimensions 

Komajiro Niizeki 
Department of Physics, Tohoku University, Sendai, 980, Japan 

Received 11 April 1989 

Abstract. A complete classification of the special points of octagonal, decagonal and 
dodecagonal quasilattices in two dimensions (2D)  is presented. They are obtained by 
projecting the special points of the starting n-gonal lattice ( n  = 8, 10 or 12) in 4D onto a 
2D subspace. A set of equivalent special points of a quasilattice are located on the centres 
of a single kind of tile in the quasiperiodic tiling associated with the quasilattice; the point 
symmetry of the special points is identical to that of the tiles. They form a quasilattice 
with the same point symmetry as that of the original quasilattice. The new quasilattice is 
of a ‘Bravais type’ or ‘non-Bravais type’ according to whether the point symmetry group 
of the special points is identical to the full point symmetry group of the quasilattice or its 
true subgroup, respectively. 

1. Introduction 

A point x in a unit cell of a periodic lattice is called a special point if its point symmetry, 
G(x), has only a fixed point but does not have a fixed line nor a fixed plane. G(x) is 
isomorphic to a subgroup of the point symmetry group, G, of the lattice and the 
number of equivalent special points in the unit cell is given by d ( x )  = ~ G ~ / ~ G ( x ) ~ ,  where 
the symbol I* \  stands for the order of the set *. A special point is nothing but a Wyckoff 
position without variable parameters in crystallographer’s terminology Wondratschek 
1987). 

The special points are also defined in the reciprocal space with respect to the 
reciprocal lattice. They are important in the band theory of solids because a special 
point has a higher point symmetry than its neighbouring points. The dispersion function 
of electrons is stationary at the special points. 

For example, the point symmetry group of FmJm/O;, the face centred cubic lattice 
in the three dimensions ( 3 ~ ) ,  is Oh and there exist four kinds of special points, I?, H, 
P and N, where the symbols in the band theory are used. The point symmetries of 
these special points are Oh,  Oh,  Td and DZhr respectively. It follows that d ( T )  = d (  H )  = 
1, d ( P )  = 2  and d ( N )  = 6 .  A representative special point in each class is given by 
[OOO], [loo], [$$;I or [tfo], respectively. 

In a crystal with a simple chemical formula, the special points of the relevant 
periodic lattice are probable positions to be occupied by the atoms. For example, 
sodium atoms occupy the I? positions of the face centred cubic lattice and chlorine 
atoms occupy H positions in rock salt (NaCl). On the other hand, calcium atoms 
occupy r positions and fluorine atoms P positions in the case of the fluorite (CaF,). 

Recently, the present author and his collaborator introduced special points in the 
reciprocal space of an icosahedral quasilattice and showed that the quasidispersion 
relation of electrons is stationary at these points (Niizeki and Akamatsu 1989). The 
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special points are given by projections of the special points of a 6~ simple hypercubic 
lattice onto the real ( 3 ~ )  reciprocal space. 

In this paper, we shall introduce special points of a quasilattice in the real space 
and present a complete classification of them for the cases of octagonal, decagonal 
and dodecagonal quasilattices. If a quasiperiodic tiling is associated with a quasilattice 
in 2 ~ ,  the centres of a single kind of tiles form a class of equivalent special points 
whose point symmetry is identical to that of the tiles. The special points of a quasilattice 
will be useful when decorating the quasilattice with atoms to represent a real quasi- 
crystal. 

In the case of a quasilattice there exists at most one point with a global (exact) 
point symmetry. Therefore, special points of a quasilattice cannot be defined in the 
same way as those of a periodic lattice. However, a quasilattice is obtained by the 
cut-and-projection method from a higher-dimensional periodic lattice (Elser 1986, 
Katz and Duneau 1986, Janssen 1986). Accordingly, special points of a quasilattice 
may be defined by the cut-and-projection method from the special points of the starting 
periodic lattice. 

In § 2, we will summarise the definition and the properties of an n-gonal lattice 
(Niizeki 1989a). In § 3, we will establish a systematic method of enumerating all the 
special points of an n-gonal lattice and, in § 4, list the special points of octagonal, 
decagonal and dodecagonal lattices in 4 ~ .  In § 5 ,  we will construct several 2~ quasilat- 
tices by the cut-and-projection method and, in § 6, investigate the special points of 
these ZD quasilattices. In 5 7, we will classify 2~ quasilattices with global point 
symmetries. In the final section, § 8, we will present several remarks on the present work. 

The reader who is interested only in the results but not in the mathematical details 
of their derivations can skip § 3. 

2. The octagonal, decagonal and dodecagonal lattices in 4~ 

We shall identify the 2~ Euclidean space E with the complex plane (Gauss-Argan 
plane) C; x = (xl, x,) E Ea- z = x, + ix, E C Let 5 = exp(2~r i ln)  with n = 8, 10 or 12. 
Then 5 is a primitive root of the n-cyclotomic equation, x n  - 1 = 0. The n unit vectors, 
1, f; 1 2 , .  . . , ln-' ,  represent the vertex vectors of the unit regular n-gon IT, centred on 
the origin. The set of complex numbers, C, = (1, 5, i2,. . . , l"-'}, acts multiplicatively 
on C as a cyclic point symmetry group of E2 = C ;  l acts as a rotation by 2 ~ r /  n. On 
the other hand, the complex conjugate operation which changes Z E  C to Z acts as a 
mirror (or reflection) with respect to the real axis of C. If the complex conjugate 
operation is added to C,, the resulting group is D,, the dihedral point symmetry group 
of the plane. D, is also the point symmetry group of IT,. Note that ID,/ = 2n. 

Of the n vectors, 1, 5, la,. . . , ln-' ,  only four are linearly independent of each other 
over 2, the integral domain'of real integers, because 5 satisfies a quartic equation 
P , ( x ) = O  with P8(x )=1+x4 ,  Pl0(x)= 1 - x + x 2 - x 3 + x 4  and P12(x)=1-x2+x4.  The 
four solutions of the equation are all primitive roots of the n-cyclotomic equation. 
They are given by 5, l', [ and with l'= -5 for n = 8 or 12 and l'= J3  for n = 10. 
Note that the series, 1, l', (l')*, . . . , (l')'-', is a mere permutation of 1, 5, 1 2 , .  . . , l"-'. 

The set of algebraic integers, Z ( l )  = {no+ n , l +  na12+  n313 I ni E Z } ,  generated by 5 
is an integral domain. Note that Z ( l ) = Z ( l ' ) .  The conjugate (not the complex 
conjugate) of v E Z ( l )  is defined by V I =  ~ l ~ + ~ ,  and its norm by N (  v) = ~ Y Y ' / ~ .  N (  v) is 
a positive integer unless Y = 0. Note that (VI)'= v (or F for n = 10) and N (  v )  = N (  v'). 
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T E  Z(5) is called a unit of Z(5) if N ( T )  = 1, or equivalently, if T-' E Z ( 5 ) .  All the 
units of Z ( 5 )  form a multiplicative Abelian group generated by 5 and a fundamental 
unit T ~ .  T~ is given by I + &  (=l+L+l- ' ) ,  ( 1 + 8 ) / 2  (=5+5-') or l t - 5  for n = 8 ,  
10 or 12, respectively. 

Let ei = ' ( l i ,  ( { ' ) i ) ,  i = 0, . . . , ( n  - l ) ,  be 2~ complex vectors, where the left super- 
script t stands for the transpose operation. Then, they are identified with 4~ real vectors 
in E ,  (=I?,= C 2 ) .  The first four, are linearly independent and 
the remaining n - 4 are given as linear combinations of the four with integer coefficients. 
The 4~ n-gonal lattice is defined by L, = { n o ~ o + .  . . + n 3 ~ 3  1 ni E 2) (Niizeki 1989a). 

E, = C2 is divided naturally into two 2~ subspaces as E,@ E,( = CO C); the former 
is called the external space and the latter the internal one. We shall denote the projectors 
which project E., onto the two subspaces as r and r', respectively; x =  
x o ~ o + x , ~ l + ~ 2 ~ 2 + x 3 ~ 3 ~  E, is projected as r ( x )  = X ~ + X , ~ + X ~ ~ ~ + X ~ ~ ~  and r ' ( x )  = 
x o + x l f ' + ~ z ( ~ ' ) 2 + ~ 3 ( ~ ' ) 3 .  It follows that r ( L , )  = r ' (L , )  = Z(5). We will sometimes 
denote the 4~ vector x = x o s 0 + .  . .+ x 3 s 3  as x = [ x o x I x z x 3 ] .  x i  are called indices of x. 

Let z = '(zl, z2 )  E C2(=E4) .  Then, an orthogonal transformation p of E,  is defined 
by pz = '( 5zl,  5'z2).  The order of p is equal to n ;  p n  = 1. p leaves L, invariant; pL, = L,.  
Another orthogonal transformation U of E, is defined by uz = (a , ,  Z2). It has the 
properties, U' = 1, upu- l=  p-' and uL, = L,.  p and U generate a group D', which is 
isomorphic to D,; D', = r - ' ( D , ) .  D', leaves each subspace in CO C( = Cz = E,) 
invariant. D', is the maximal point symmetry group of L, having this property. In 
what follows, we shall frequently denote D', simply as D,. 

We should mention here the arbitrariness in indexing lattice vectors of L,. Let 
T E Z ( 5 )  be a unit. Then, the 4~ lattice generated by di = ' ( l i /7 ,  ( [ ' ) i / ~ ' ) ,  i = 0, . . . ,4,  
is identical to L, because there exists a unimodular matrix K such that ( e O ,  E , ,  E , ,  E ~ )  = 
( Zo, El1, d2, d3) K .  The di are transformed by D, linearly among themselves in the same 
way as the are. Therefore, there are no reasons why we should not index x E E ,  by 
the new basis vectors E l i .  We shall denote the new index with a tilde as [. . .I". Thus, 
x is indexed in two ways as x = [ x o x l x 2 x 3 ]  = [x'ox"lf2zx"3]". The two sets of indices are 
related to each other by '(go, Z l ,  &, &) = K ' ( x o ,  x , ,  x , ,  x 3 ) .  The arbitrariness in index- 
ing L, is closely related with the self-similarity of an n-gonal quasilattice. 

A symmorphic space group in 4~ is defined in terms of D, and the translational 
group L,.  We shall denote it by g,. The point symmetry group of x E E,  is defined 
by G(x) = {a 1 a E G and a x  - x E L,} with G = D,. Note that a x  - x E L, is equivalent 
to a x  = x mod L,.  G(x) is a subgroup of G. 

In the case of n = 8, we find that e i .  sj = 2Si,j. Therefore, L8 is a 4~ simple hypercubic 
lattice with the lattice constant a. The full point symmetry group of LE is R(4), the 
4~ hyperoctahedral point group, whose order is equal to 384. However, only the 
subgroup DE of R(4) is relevant to the octagonal quasilattice to be derived from LE. 

In the case of n = 12, c0 and E~ are orthogonal to E ,  and c3 and LI2 is represented 
as a direct product of two 2~ lattices; L, ,  = L, x L'6 where L6 (or ~ 5 ' ~ )  is a 2~ hexagonal 
lattice generated by eo and e2 (or E ,  and E ~ ) .  

E , ,  E ,  and E ~ ,  of 

3. The special points of an n-gonal quasilattice I: the general theory 

Let us denote x + L , ( = { x + l I l ~  L , } )  by L , ( x ) ,  i.e. L , ( x )  is a simple translate of L,.  
If x is a special point of L, then L , ( x )  represents the set of all the special points 
equivalent to x with respect to the translational group L,. Note that a L , ( x )  = L , ( x )  
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for a E G(x).  On the other hand, we shall denote by L , [ x ]  the set of all the equivalent 
special points to x with respect to the space group 9,. Since a L , [ x ]  = L,[x]  V a  E 

D,, L,[x]  is an n-gonal lattice composed of d(x)(=IG1/lG(x)l) sublattices which are 
translationally congruent with L,.  It is a Bravais-type n-gonal lattice only when d (x) = 1 
(for a non-Bravais-type n-gonal lattice, see Niizeki 1989b). 

The point symmetry group of a special point of L, is equal to D, or C, where m 
is a divisor of n, but the case m = 1 is eliminated. The number of equivalent special 
points in a unit cell of L, is given by d = n / m  if the relevant point group is D,. d is 
called the order of the special points. 

All the lattice points in L, form an important class of special points, which is 
denoted by r following the convention of the band theory. Note that G(T) = D, and 
d ( T )  = 1. 

Let m ( # l )  be a diviser of n and assume that X E  E4 is a special point such that 
G(x) 2 C,. Then, we obtain p k x =  x mod L, with k = n / m ( < n )  is another divisor of 
n. Projecting this condition onto the external space yields that l k z  = z mod Z ( l )  with 
z = n(x) .  We assume that X E ~  L,, i.e. x is not a r point. Then, z E Z ( l ) ,  so that 
p = 1 - Lk is not a unit of Z ( l ) .  It follows that z E J where J = pZ(l )  with p = 1/(1- l k )  
is a fractional ideal. Note that Z ( l ) = J  because 1 = p p  EJ. Note also that J is 
self-conjugate, J = 

From z = r ( x )  E J, we can conclude that x E M with M = r - ’ ( J )  (the domain of 
r-’ is extended naturally from Z ( l )  to Q ( l ) ) .  M is a 4~ lattice generated by the basis 
vectors, E ’ ,  = ‘ ( p l ‘ ,  p ’ ( l ’ ) ’ ) ,  i = 0 , .  . . , 3 ,  with p’ (  =l/p’= 1/[1- ( l ’ )k ] )  being the conju- 
gate of p. M is an n-gonal lattice and L, is a D,-superlattice of M (Niizeki 1989b) 
because J is a self-conjugate ideal of Z ( 5 )  and J =I Z ( 5 ) .  We shall call M a miniature 
lattice of L, generated by p and denote it as M = L , { p } .  The generator of M is 
determined up to a multiplicative factor being a unit. M is similar to L, only when 
it has a generator p such that p‘ ,  the conjugate of p, satisfies Ipl=Ip‘l; /PI is then 
equal to the ratio between the lattice constants of M and L,.  

We can show that G(x)  2 D, Vx E M because J is self-conjugate. Therefore, all 
the lattice points of M are special points of L,. Moreover, we can conclude that L, 
has no special points whose point symmetries are cyclic groups. 

Let A =  M I L , ,  the residue class module. Then, we obtain that A - J / Z ( l ) -  
Z ( l ) / ( p Z ( l ) ) ,  which is a residue class ring. It follows that q = [RI = N ( p )  and M is 
divided into q sublattices which are translationally equivalent to L,. 

If m = 2 then p = 2, p = i, q = 16 and M = L,{i} ,  which we may call a half lattice 
of L,. On the other hand, we obtain C z = { l ,  I }  with I = p ” ’ *  being the inversion 
operation; x E E4-+ Ix = -x. We shall denote a special point of L, as type I or I1 
according to whether or not its point symmetry group includes I.  A necessary and 
sufficient condition for x E E4 to be a type-I special point of L, is that x E L,{i} .  The 
following proposition is proved easily. Let x be a special point of L, and assume that 
its point symmetry group is D, with m ( # l )  a divisor of n. Then, m is even or odd 
according as the special point x is of type I or type 11, respectively. A r point is of 
type 1. 

It follows that L8 has no type-I1 special points. Moreover, the point symmetry 
group of a type-I1 special point of L, is D, if n = 10, but D3 if n = 12. 

We now return to the miniature lattice M = L , { p }  with /3 = 1/(1- lk) .  The q 
sublattices of M are permuted among themselves by every operation in D,. Therefore, 
they are grouped into a number of irreducible subsets with respect to D,. This grouping 
is performed in a similar way as the one by which a similar problem is solved in Niizeki 

because 6 = - l k p .  
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(1989b). The union of all the sublattices in the ith subset is identical to L,[x,], where 
x, is a representative point in the union. The number of the sublattices in L,[x,] is 
given by d, = ID,l/lG(x,)I. We can assume that xo = 0, do= 1 and L,[xo] = L,. Thus, 
we obtain M = L , ~ L , [ X ~ ] U . . . U L , , [ X ~ - ~ ]  and q = l + d l +  . . .+  d,-,, where s is the 
total number of the subsets. That is, M is divided into s equivalence classes of the 
special points of L,. 

If p = 1 - l k  is a prime number in Z ( l )  then, q =p' ( j  > 1) with p being a prime 
integer and A is a finite field. It can be shown in this case that G(x,) is equal to D, 
foral l  i , so tha t  d , = d 2 = . . . = d s - l = k a n d  s - l = ( q - l ) / k .  

If ~ V E  Z ( 5 )  such that p v = p ,  as in the case that p is a prime number then, 
J c p - ' Z ( l )  and M c p - I L , , ,  so that X E  M is indexed as [non,n2n,]/p with n, being 
integers. An element of M /  L, can be indexed in this way, but with 0 S n, S p - 1 or 
- r  s n, s r with r = ( p  - 1)/2, the latter part of which does not apply to the case p = 2. 

If p = 1 - l k  is not a prime in Z ( l ) ,  it has a non-trivial divisor p ' =  1 - lk' with k' 
being a diviser of k. Then, L,,{l/p'}c L,{l/p}; the former is a D,,-superlattice of the 
latter and consists only of special points. On the contrary, L n { 1 / ~ }  has no such 
superlattice if p is a prime in Z ( 5 ) .  

A set of translationally equivalent special points of L, includes one and only one 
which belongs to a unit cell (a fundamental domain) of L,. We can take it as being 
representative of the set. The Voronoi cell (Wigner-Seitz cell), V,,, of the origin of L, 
is a symmetric unit cell. Here, the points on one half of the boundary of V, are 
included in V, but those in the other half are not. V, is a 4~ polytope whose 3~ 
hypersurfaces bisect lattice vectors representing neighbouring lattice points to the 
origin. The number, F,,, of 3~ hypersurfaces of V,, satisfies F, 3 n with n equal to the 
coordination number of L,; we obtain, in fact, that F, = 8, Flo = 30 and F,* = 12. 

Let x be an interior point of V,,. Then we obtain c r x = x V c r ~ G ( x ) ,  so that 
{cx I c E R }  c E4 is a fixed set of G(x).  Consequently, x can be a special point only 
when x=O. Thus, other special points in V, than the r point are all located on the 
boundary of V,. They must be on the vertices of V,, or on the centres ofj-dimensional 
(1 ~j 3) surfaces of V,,, which can be proved in a similar way to the case of an 
interior point of V,,. 

4. The special points of an n-gonal quasilattice 11: applications 

4.1. The octagonal lattice 

V, is a 4~ hypercube which has eight 3~ hypersurfaces and sixteen vertices. The sixteen 
type-I special points in V, are classified into six classes as given in table 1. The centre 
of a hypersurface, which is a cube, belongs to X (more exactly, LJX]), a vertex to 
0, the middle point of an edge to R and a centre of a 2~ surface, which is a square, 
to C or C'.  C and C' would be equivalent if the point symmetry of L, were R(4). 

Table 1. The special points of the octagonal lattice. 

point symmetry D8 DZ D2 D4 D2 D* 

[OL 1'] representative [OOOO] [4000] [ftOO] [fOfO] 2 2 2  

order 1 4 4 2 4 1 
[1?11] 

2 2 2 2  
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The two numbers p ,  = 1 - l and p2 = 1 - l2  with N ( p l )  = 2 and N ( p 2 )  = 4  are 
divisors of 2( = 1 - 14) in Z ( 5 ) .  The relevant three miniature lattices, L8,l = L8{ l /p1}, 
L8,2=L8{l/p2} and L8{$} with l /p l  = ( 1 + ~ + ~ 2 + ~ 3 ) / 2  and 1 / p 2 = ( l + 1 2 ) / 2 ,  are 
associated with special points with point symmetries D8,  D4 and D2, respectively, and 
satisfy the relationships L 8 . 1 ~  L8,2 c L&. More precisely, L8,1 = L8 U L8[0]  and L8,2 = 
L8,l U &[ c']. L8.2 is similar to La, while L g , 1  is identical to a 4~ body centred hypercubic 
lattice. 

L8 does not have type-I1 special points, as noted previously. 

4.2. The decagonal lattice 

2 is a prime number of Z ( 5 )  and the sixteen type-I special points of L,,, are classified 
into four classes as given in table 2. Note that four X points other than the representative 
in the table are given by [GOO], [OOfO], [OOO;] and [;&44]; the last X point is transla- 
tionally equivalent to f~~ because E ,  - + - + = 0. Similarly, the fourth C (or 
C') point is given by [f$fO]  (or [ffot]). 

Table 2. The special points of the decagonal lattice. The first four are of type I and the 
last two are of type 11. 

symbol r X C C' P P' 
~~~ 

point symmetry D,, D2 D2 D* D5 D5 

representative [OOOO] [f000] [ t  fool [tOiO] [m3] 
order 1 5 5 5 2 2 

[1222 
5 5 5 5 1  

The type-I1 special points are obtained from Llo{p} with p = 1/(1 - 1 2 ) .  q = 
N(l - 1 2 )  = 5  and A = = Z , ( = Z / S Z ) .  Using the equalities 12p = (2+{+4'2+253)/5 and 
212p = (-1 + 24'+ 23* - J 3 ) / 5  mod Z ( l ) ,  we obtain A = (0, xl, -xl, x2, -x2} mod Llo 
with x1 = [2112]/5 and x2 = [i22i]/5. L,,{p} is divided into three sublattices as L l o u  
L l o [ x , ]  U L, , [x , ]  with L,,[x,] = L, , (x , )  U Llo(-x,), i = 1,2. The last two of the three 
present two classes of type-I1 special points whose point symmetry groups are both 
D5, as summarised in table 2. The two classes of special points were noticed by Janssen 
(1986). 

VI, is a 4~ polytope with thirty 3~ hypersurfaces; ten of them bisect the lattice 
vectors of the nearest neighbours of the origin and the remaining twenty bisect those 
of the second neighbours. The centres of the former ten belong to X and those of the 
latter twenty to C and C'. P and P' are located on vertices of Vlo. Note, however, 
that VI, has other vertices which are not special points of L,, .  

4.3. The dodecagonal lattice 

The sixteen type-I special points are classified into four classes, as given in table 3. 
Note that LI2[r]  U LIZ[ C'] = L12{l/p}, where p = 1 - 5'( =a exp( -7ri/4)) with q = 
N ( p )  = 4 being a prime divisor of 2. LI2{1/p} is similar to Liz. 

The type-I1 special points are obtained from LI2{p} where /3 = 1/( 1 - 14) with 
q = N (  1 - 14) = 9. A == Z,( i ) ( = Z 3  + iZ3). The miniature lattice is similar to L I 2 .  It 
includes two classes of type-I1 special points, as listed in table 3. 
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Table 3. The special points of the dodecagonal lattice. The first four are of type I and the 
last two are of type 11. 

symbol r X C C’ T T’ 

point symmetry D,, D2 D2 D4 D3 D3 

[1!11] representative [OOOO] [4000] [ 4 too1 [400t] [f@Ol 3 3 3 3  

order 1 6 6 3 4 4 

Since LI2 is a direct product of two hexagonal lattices L6 and L’6 in 2 ~ ,  V,, is a 
4~ hyperprism; V,, = H x H’,  where H and H’ are regular hexagons representing the 
Voronoi cells of L6 and L’6. V,, has 36 (=6x6)  vertices, which belong to T‘. Its 
twelve 3~ hypersurfaces are hexagonal prisms in 3 ~ .  One of them is given by P6 = H x S 
with S being one of the six sides of H’. The centre of P6 belongs to X .  The centres 
of the two hexagonal sides (surfaces) of P6 belong to i? On the other hand, three of 
the centres of the six square sides belong to C and the remaining three to C’. 

We have noted an arbitrariness in indexing an n-gonal lattice. Then, do the symbols 
assigned to different classes of the special points have definite meanings? The answer 
is affirmative for r of L, for all n, C, C’ and 0 of L, and C’ of LIZ but is negative 
for other classes. For example, the triplet { X ,  C, C‘} of L,, have a common point 
symmetry group, D2, and are permuted cyclically among themselves if the index scheme 
is changed. There are many doublets with similar properties: { X ,  R }  of L,, {P, P’} of 

and { X ,  C }  and {T ,  T‘} of L12.  These results are consequences of the fact that 
different sublattices in a miniature lattice are permuted among themselves under a 
self-similarity transformation (Niizeki 1989b). Since the transformation preserves the 
symmetry, the members of a multiplet must have a common point symmetry group. 

5. The octagonal, decagonal and dodecagonal quasilattices 

We consider in this section only the Bravais-type quasilattices (Niizeki 1989a). An 
n-gonal ( n  = 8, 10 or 12) quasilattice in 2~ is a set of points in the external space given 
by 

Q n ( r j ,  W ) = { n ( l ) l l ~ L ,  and n ’ ( l )~C$+  W }  ( l a )  

(1b) = { ,% n i l i  I ni E 2 and ~ ~ ( 5 ’ ) ’  E r j  + W }  
i = O  

where r j  is a complex number representing the phase vector and W a polygonal domain 
(in the internal space) with point symmetry D,. The condition that ~ ’ ( l )  E + W is 
equivalent to the condition that 1 is included in the strip S (  4, W )  obtained by thickening 
the external space with W and translating subsequently by r j  along the internal space. 
The strip S ( + ,  W )  is called regular if its boundary includes no lattice points of L,, 
and is called singular otherwise. 

The n-gonal quasilattice gives naturally a quasiperiodic tiling (QPT) of the plane 
in terms of a finite number of polygonal tiles (Niizeki 1989a). We will sometimes 
identify a quasilattice with the QPT associated with it. 

The n-gonal quasilattice has a macroscopic point symmetry given by G =  D,. It 
also has a self-similarity which is characterised by a complex similarity ratio given by 
a unit of Z ( l ) .  
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The local isomorphism class to which On(&), W) belongs is determined by the 
window W and is independent of 4. Therefore, we will sometimes denote it simply 
as O n ( W ) .  

We now investigate the three cases separately. 

5.1. The octagonal quasilattice 

The projection of a unit cell of onto the internal space is a regular octagon n’,, 
which is related to the ‘unit octagon’ Il, by n‘8 = n’( V,) = yn8 with y = (1 + 5)/2. The 
relevant QPT is composed of square tiles and rhombic tiles (Ishihara et a1 1987, see 
also Niizeki 1989~) .  

5.2. The decagonal quasilattice 

The decagonal quasilattice, Q l o ( ~ l o ) ,  gives rise to a QPT with four kinds of tiles, i.e. 
a regular pentagon, a thin rhombus, a crown and a pentagonal star (Penrose 1974, 
Niizeki 1989a) as shown in figure 1. This quasilattice is identical to the projection of 
an icosahedral quasilattice along a fivefold axis. 

We consider a different choice of the window W. Let TI, be the unit regular pentagon 
whose vertices are given by 1, 12, 14, l6 and ls and let -n, be its inversion. Then, 
yn5u ( - y n , )  with y = 1 + l3  is a decagonal star Zlo whose ten obtuse vertices coincide 
with the vertices of nl0. Since Z l o ~ l l I l 0 ,  the decagonal quasilattice, Qlo(Zlo), is 
obtained from Qlo(IIIlo) by adding new lattice points to it. Each of the new points 
appears in such a way that a pentagonal tile of the old QPT is divided into a thick 
rhombus and a part of a pentagonal star. One (or two) of the parts and a crown (or 

Figure 1. A Bravais-type decagonal quasilattice (solid lines) obtained with a window given 
by the unit regular decagon The special points located on the centres of pentagonal 
tiles form a non-Bravais-type decagonal quasilattice (broken lines), which consists of two 
sublattices corresponding to the two possible orientations of the pentagons. 
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Figure 2. A Bravais-type decagonal quasilattice (solid lines) obtained with a window given 
by the decagonal star Z,,,, A pentagonal tile in figure 1 is divided into a thick rhombus 
and a part of a pentagonal star if and only if the centre of the tile is a two-pronged vertex 
of the ‘dual quasilattice’. The special points located on the centres of pentagonal stars 
form a non-Bravais-type decagonal quasilattice (broken lines), which is similar with ratio 
7 to the one in figure 1. 

a thin rhombus) of the old QPT are joined into a pentagonal star. Thus, the new QPT 

is composed of three kinds of tiles, namely, the pentagonal star, a thick rhombus and 
a regular pentagon, as shown in figure 2. 

5.3. The dodecagonal quasilattice 

The dodecagonal quasilattice, Q12(ll,2), gives rise to a QPT with three kinds of tiles, 
i.e. an equilateral triangle, a square and a trigonal hexagon as shown in figure 3 (Niizeki 
and Mitani 1987). The dodecagonal quasilattice, Q12(rI’12), where WI2 = .IT’( V12) = yrI12 
with y = (1 + 5)/J3 is derived from Q,2(IT12) by adding new lattice points to it. The 
new QPT is composed of three kinds of tiles, namely, the equilateral triangle, the square 
and the thin rhombus (Stampfli 1986, Niizeki and Mitani 1987). 

6. Special points of n-gonal quasilattice in 2D 

We now consider how we should define special points in the case of the n-gonal 
quasilattice, Q n (  W ) ,  with n = 8, 10 or 12. Let L,[A] be the set of all the type-A special 
points of L,. Then, . r r (L, [A]) (={ . i r (x) Ix~L, , [A]})  as well as .rr(L,) is a dense set in 
the external space. Therefore, it is not very useful to define all the points in .rr(L,[A]) 
to be special points of Q n ( c $ ,  W). We should cut L,[A] prior to projecting it. Then, 
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Figure 3. The solid lines represent a Bravais-type dodecagonal quasilattice Q,2(II,2) and 
broken lines a non-Bravais-type quasilattice which is formed by the type T special points 
located on the centres of equilateral triangles. The latter quasilattice consists of four 
sublattices corresponding to the four possible orientations of the triangles. The centres of 
squares (or trigonal hexagons) are the type C’ (or T )  special points. 

by what criterion should we cut it? One obvious choice is to use the strip, S ( 4 ,  W). 
This choice is reasonable when A = because each lattice point in the quasilattice 
should be its r point, as in the case of a periodic lattice. This choice is, however, not 
necessarily the best choice in other cases, which we shall consider below. 

We take as an example the decagonal quasilattice, Q l o ( l I 1 o ) .  The relevant QPT 

contains pentagonal tiles, which can take two orientations, as seen in figure 1. They 
are translationally congruent with HI’s, where 11’5 = pl15 with p = I / (  1 - 12)  
(= exp(3ri / l0) /2  sin( ~r/.5)). We shall call each orientation positive or negative, 
respectively. 

In order that z E C is the centre of a positive pentagon, it is necessary that 
z + /3 = T (  I )  31 E Llo because p represents a vertex of lI’, . Since /3 = 7r(x1) with x1 = 
[2112]/5 being a representative of Llo[P], we find that z = ~ ( x )  with x = -xl + I E 

L,,(-xl) .  The condition, d ( I )  E 4 + W with W = lIlo, is rewritten with x = -xl + I as 
n ’ ( x ) ~  4 - p ’ +  W with p ’ =  d ( x l )  ( = l / ( l  +l)  =exp(-rri/l0)/(2 s i n ( 2 ~ / 5 ) ) )  being 
the conjugate of p. By performing similar arguments for the other four vertices of II’s, 
we obtain that d ( x )  E 4 -p’“’)’ ’+ W for i = 1, , . . . , 4 .  The five conditions can be 
cast into a single condition, d ( x )  E 4 + W‘, where W’ is the common part of the five 
domains, -p ’ ( l ’ ) ’ ’  + W, i = 0,  . . . ,4. It is a problem of elementary geometry to show 
that W ‘ =  -WfS with lI”5=p’lls, so that the set of the centres of all the positive 
pentagonal tiles in the QPT is given by { ~ ( x )  1x E L , ( - x , )  and n ’ ( x )  E 4 -WS}. 

By means of a similar argument for the case of the negative pentagons, we arrive 
at the conclusion that the set of the centres of all the pentagonal tiles is given by 

Q I O , P ( 4 ,  n”5) = { d x )  1x E LIO[Pl and n’(x) E 4 * l l”s l  (2) 
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where the sign in *lTf5 depends on which of the two sublattices of L l o [ P ] ( = L l o ( x l )  U 

Llo(-xl))  x belongs to. 
Llo[ PI is a non-Bravais-type sublattice of the n-gonal lattice M, which is a miniature 

lattice of Llo introduced in Q 4. It can be shown easily that QIO,P = Qio,p(n’ ’5)  is 
identical to the homopolar non-Bravais-type decagonal quasilattice constructed in 
Niizeki (1989b) as given in figure 1. It is also a sublattice of the Penrose lattice; it is 
obtained from the latter by discarding the lattice points with de Bruijin’s indices 1 and 
4 (de Bruijin 1981, Niizeki 1989b). This relationship between the pentagonal QPT and 
the Penrose lattice (tiling) is implicitly noticed by Henley (1986), though no proofs 
are presented. 

By a similar argument, we can show that the set of the centres of all the pentagonal 
stars in the QPT is a non-Bravais-type decagonal quasilattice Q10,P8( ~ - ~ n ” ~ )  derived 
from L I 0 [ P ’ ] .  The lattice points of this quasilattice coincide with the ‘stars’ S in the 
corresponding Penrose lattice mentioned above. It is similar to QIO,P with the ratio, 

On the other hand, the set of the middle points of all the bonds (the edges of the 
pentagonal tiles) in the QPT is another non-Bravais-type decagonal quasilattice derived 
from L l o [ X ] .  The five sublattices of L l o [ X ]  correspond to the five orientations of the 
bonds. Similarly, the centres of the thin rhombi are special points derived from Llo[ C]. 

We consider next the special points of Qlo(Xlo) given in figure 2. The set of the 
centres of all the pentagonal stars in it is a decagonal quasilattice QIO,P, = Q10,p’ (~- l I I ’ ’5) ,  

which is similar to QIO,P. The union of the two quasilattices, QIO,P U QIO,P, ,  is identical 
to the Penrose lattice, as noted in Niizeki (1989b). Similarly, the centres of the thick 
rhombi in the QPT are special points of type C’; special points of this type are absent 
in Qlo(lllo). Since the thin rhombi in Qlo(IIlo) are changed in Qlo(Xlo) into pentagonal 
stars, all the type-C special points in Qlo(lllo) disappear in Qlo(I;lo). That is, whether 
Ql0( W )  has special points corresponding to a specified class or not is dependent on W. 

We present several remarks on the special points of octagonal and dodecagonal 
quasilattices. The lattice points (or the middle points of the bonds) in QE(n’8), Ql2(rII2) 
and Ql2(ITl2) are special points corresponding t o r  (or X ) .  The centres ofthe polygonal 
tiles which have their own point symmetries are special points of the types with the 
same point symmetries; a rhombus and a square in Q8(n’8) (or QI2(lTl2)) correspond 
to C and C’,  respectively, an equilateral triangle in the two dodecagonal quasilattices 
to T‘ and a trigonal hexagon in Ql2(n1,) to T. On the contrary, special points 
corresponding to R and 0 are absent in QB(n’8), C is absent in QI2(nl,) and T in 
Q12(12’12). The final remark is that the quasilattice associated with the type T‘ special 
points in Ql2(nl2) coincides, as shown in figure 3, with the non-Bravais-type 
dodecagonal quasilattice constructed in Niizeki (1988a), which can be proved 
rigorously in a similar way to the one in the case of decagonal quasilattices. 

T3(T=(1+f i ) /2 ) .  

7. An application of the theory to a classification of n-gonal quasilattices with 
global point symmetries 

Let xo be a representative in L, [A]  with A being a class of special points of L,, and 
assume that S ( 4 ,  W )  with 4 = -.rr’(xo) is a regular strip. Then, the condition that 
. r r ’ ( I )  E 4 + W with IE L, is equivalent to .rr’(xo+ I )  E W. Therefore, the shifted n-gonal 
quasilattice, Q, ( A ,  W )  = .rr( xo) + Q, ( 4 ,  W ) ,  is rewritten as 

( 3 )  Q,(A,  W ) = { ~ T ( X ) I X E L , ( X ~ )  and . r r ’ ( x ) ~  W } .  
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That is, Q,(A, W )  is identical to the projection of a cut of L,(x,)  with S(0, W ) .  Since 
aL,(xo) = L,(xo) and cuS(0, W )  = S(0, W )  Vcu E G(x,), Q,(A, W )  has G(x,) as its global 
(or exact) point symmetry group with respect to the origin. 

In the case where S ( 4 ,  W )  is singular, there occurs a frustration as to whether or 
not the lattice points on the boundary of the strip should be projected. This frustration 
is resolved by an infinitesimal change of 4. Unfortunately, the exact point symmetry 
is broken in this procedure, which one can say is a spontaneous symmetry breaking 
(de Bruijin 1981, Niizeki 1988b, 1989d). The ratio of the number of the lattice points 
breaking the symmetry is, however, infinitesimal, so that G(x,) is virtually the global 
point symmetry group of Q,(A, W ) .  

We can obtain simple QPT only for several special choices of W. Therefore, to take 
a special value for 4 as above tends to make the strip singular. A necessary condition 
for the regular case to be realised in Q,(A, W )  is that Qn( W )  has a local configuration 
consistent with the point symmetry group G(A) because, in the regular case, the local 
configuration of Q,(A, W )  around the origin is required to have this property. It is 
found that a regular case is realised in Qs(T, Il's), Qlo(P, Ill,), Q,,(P', Ill,), Q,,(P, C,,), 
Q12(r ,  

Thus, the classification of the special points of L, made in § §  3 and 4 is considered 
to be a classification of n-gonal quasilattices with global point symmetries. 

A global point symmetry of a quasilattice is unchanged by a self-similarity transfor- 
mation. However, the class of the relevant special point at the origin can be changed. 
For example, Qlo( P, IlIl0) and Qlo( P' ,  ITlo) are interchanged by a self-similarity transfor- 
mation with T = (1 + f i ) / 2 .  That is, the central tile in the former is a pentagon but 
that of the latter is a pentagonal star (see figure 1 in Niizeki 1989a). It is a general 
feature that different members of a multiplet are permuted cyclically under a self- 
similarity transformation of an n-gonal quasilattice. 

The theory in this section is a generalisation of that developed by de Bruijin (1981) 
for the case of the Penrose lattice. 

etc, while a singular case is in Q8(0, n'g), Qlo(r, IT,,), QI2(r, nI2) etc. 

8. Discussion 

From the discussion in 5 6, we may say that the definition of the special points of a 
quasilattice has some arbitrariness, contrary to the case of a periodic lattice. Let A be 
a class of special points of L,. Then, every point in v ( L , [ A ] )  has the potential to be 
a special point of Qn( W ) .  Whether a point in .rr(L,[A]) is a special point of Q,( W )  
or not is determined by some criterion from the local configuration around it. However, 
there are no a priori criteria. Therefore, we may choose an criterion appropriate to 
the purpose of the use of the special points. 

For example, QS(IT',) (or Q,2(Il'12)) has vertices of local symmetry of D8 (or DI2), 
i.e. the full symmetry, but Qlo(l-Ilo), Qlo(Clo) or Q12(Il12) has no vertices of the full 
symmetry. Whether we should consider all the lattice points of Qn( W )  to be r points, 
as assumed in 8 6, or whether we should limit to the vertices of the full point symmetry 
cannot be determined by a priori means. 

The theory developed in P 3 is quite general and applicable to a classification of 
special points of an n-gonal lattice with n z 14 provided that Z ( l )  is a principal ideal 
ring. 

The present theory will be a starting point for classifying the special points of an 
n-gonal lattice with a non-symmorphic space group. It is, on the other hand, straightfor- 
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ward to extend the present theory to the classification of ‘special lines’ or ‘special 
planes’ of an n-gonal lattice. 

It can be shown easily that L z ,  the reciprocal lattice of L,, is also an n-gonal 
lattice. Therefore, the classification of the special points of L: has been completed 
by the present work. A detailed argument on the special points in the reciprocal space 
of an n-gonal quasilattice will be published elsewhere. 

Most of the results of the present paper can be extended to the icosahedral 
quasilattices in 3 ~ .  There are three kinds of Bravais-type icosahedral quasilattices. A 
complete classification of their special points is published in the following paper. 
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